

Landon Sanders, Ally Ratliff, Adrian Lazaro-Lobo, Gary Ervin, Gray Turnage

2019 Midsouth Aquatic Plant Management Society annual conference

Nov 4-6, 2019

Baton Rouge, LA

Aquatic plants can be beneficial to our ecosystem

- Nuisance plant growth can negatively impact water quality
 - Decrease DO, reduce light penetration, Habitat loss, Increase sedimentation, Flooding, Etc.

- Herbicides are commonly used to control nuisance aquatic plants because of their efficiency
- 2,4-D, glyphosate, triclopyr, imazamox, imazapyr, flourpyrauxifen-benzyl, & flumioxazin investigated in this work.
 - These represent 4 MOA's: Auxin, ALS, EPSPS, PPO

- Water chemistry/stability & aquatic plant relationship
 - DO inversely related to water temperature
 - Low pH affects fish ability to absorb DO
 - Excess organic material can cause eutrophic conditions
 - Thick, dense growth contribute to low oxygen levels at night
 - Oxygen consuming bacteria feed on decaying algae and plants

- When plants die or start to decay, nutrients released back into the water column.
- Little is known about water quality after plant death
 - DO can drop after plant death due to microbial activity.
 - pH diurnal shift attenuated.
 - Conductivity little is known, possibly rise over short-term.
 - Temperature equilibrium across the lake after plant death.

- Little is known about water quality after plant death
 - Nitrate, Ammonium nutrient metrics
 - Toxic nutrient levels for aquatic organisms such as fish.
 - Nitrate is relatively nontoxic to fish except at exceedingly high levels (above 90 mg/l NO3-N).

- Little is known about water quality after plant death
 - Nitrate, Ammonium nutrient metrics
 - Toxic nutrient levels for aquatic organisms such as fish.

- 2 5 mg/l of total ammonia nitrogen common in the spring and fall.
- Toxicity varies with fish species and time to adjust to elevated levels.
 - Lethal concentrations for fish species range from 0.2 to 2.0 mg/L.

- What happens to water quality after plant death?
- Does plant breakdown cause a change in water quality metrics and nitrogen levels?
- If changed observed, is it harmful to aquatic organisms?

Community of 3 rooted native aquatic spp used – these can

be problematic in SE U.S.

- American lotus
- White waterlily
- Watershield

- Community of 3 rooted native aquatic spp used these can be problematic in SE U.S.
- These are problematic at Noxubee Wildlife Refuge
 - Inhibits navigation and recreational activity
 - Negatively affect ecosystem processes
 - Can disrupt temp, DO, pH

- Plants were grown in outdoor mesocosms (1136 L; 45 total)
 - 6 pots Lotus & Water lily per mesocosm
 - 4 pots Watershield per mesocosm
- Treated with: 7 herbicides at 2 rates (max and half max) each + non-treated ref (15 treatments)
 - Effective: glyphosate, imazamox, imazapyr, florpyrauxifen-benzyl

	Treatments			
TREATMENT #	TREATMENT	RATE		
1	Reference	NA		
2	2,4-D	4.67 L/ha		
3	2,4-D	9.35 L/ha		
4	Glyphosate	4.38 L/ha		
5	Glyphosate	8.76 L/ha		
6	Triclopyr	9.35 L/ha		
7	Triclopyr	18.70 L/ha		
8	Imazamox	4.67 L/ha		
9	Imazamox	9.35 L/ha		
10	lmazapyr	1.75 L/ha		
11	lmazapyr	3.51 L/ha		
12	Flourpyrauxifen-benzyl	1 PDU		
13	Flourpyrauxifen-benzyl	2 PDU		
14	Flumioxazin	0.44 L/ha		
15	Flumioxazin	0.88 L/ha		

- Water quality metrics measured weekly, bi-monthly, and quarterly
- Nitrate & ammonium measured:
 - 0WAT, 2DAF, 2WAF, 4WAF, 8WAF, 26WAT, 52WAT

ANOVA followed by Fisher's LSD when difference's detected

TRT	8/3/2018	8/14/2018	8/21/2018	8/27/2018	9/3/2018	9/16/2018	10/2/2018	10/16/2018	10/30/2018	2/7/2019	4/29/2019	7/14/2019
MEAN	33.44	31.58	27.02	30.38	26.1	31.35	28.6	17.08	19.75	18.95	23.54	27.61
p-value	0.9347	0.6743	0.6853	0.9862	0.8599	0.9593	0.4095	0.5359	0.4925	0.3811	0.5287	0.7373

TRT	8/3/2018	8/14/2018	8/21/2018	8/27/2018	9/3/2018	9/16/2018	10/2/2018	10/16/2018	10/30/2018	2/7/2019	4/29/2019	7/14/2019
MEAN	0.201	0.22	0.225	0.254	0.239	0.182	0.158	0.153	0.153	0.051	0.256	0.053
p-value	0.8586	0.8286	0.6374	0.4259	0.3899	0.6546	0.5137	0.7845	0.8104	0.5175	0.7706	0.6265

TRT	8/3/2018	8/14/2018	8/21/2018	8/27/2018	9/3/2018	9/16/2018	10/2/2018	10/16/2018	10/30/2018	2/7/2019	4/29/2019	6/28/2019
MEAN	11.613	13.598	10.586	8.843	6.93	7.652	8.714	7.754	9.047	8.397	7.443	6.696
p-value	0.6835	0.8947	0.5819	0.838	0.8894	0.859	0.2398	0.35	0.3593	0.6412	0.8557	0.7307

TRT	8/3/2018	8/14/2018	8/21/2018	8/27/2018	9/3/2018	9/16/2018	10/2/2018	10/16/2018	10/30/2018	2/7/2019	4/29/2019	7/14/2019
MEAN	12.11	11.9	11.73	9.32	8.74	9.35	9.78	8.74	9.84	8.5	8.95	6.75
p-value	0.1304	0.6401	0.7595	0.8835	0.9333	0.4979	0.2271	0.7329	0.5544	0.2438	0.9937	0.8395

TRT	8/3/2018	2DAF	2WAF	4WAF	8WAF	2/7/2019	7/14/2019
MEAN	1.27	0.65	0.721	0.97	2.202	0.214	0.114
p-value	0.3402	0.1368	0.5254	0.2869	0.0051	0.5214	0.2235

TRT	8/3/2018	2DAF	2WAF	4WAF	8WAF	2/7/2019	7/14/2019
MEAN	1.568	2.265	1.542	1.788	2.742	1.161	11.315
p-value	0.4055	0.0001	<0.0001	<0.0001	<0.0001	0.0817	0.611

TRT	8/3/2018	2DAF	2WAF	4WAF	8WAF	2/7/2019	7/14/2019
MEAN	1.568	2.265	1.542	1.788	2.742	1.161	11.315
p-value	0.4055	0.0001	<0.0001	<0.0001	<0.0001	0.0817	0.611

Conclusions

- DO, pH, conductivity, and temperature were not affected by plant breakdown when compared to reference.
- Ammonium shows a drop in all treatments at 8 WAF (9-12 WAT depending on treatment); otherwise no difference from reference
- Nitrate variable results

Conclusions

- Some treatments (2-7, 14, 15) lower at 2 DAF (1-4 WAT) compared to reference; others no difference
- Some treatments (9, 12, 13) higher at 2 WAF (3-6 WAT);
 others no difference from reference
- Some treatments (2-7, 14, 15) higher at 4 WAF (5-8 WAT);
 others no difference than reference
- Some treatments (2-7, 14) lower; one higher (11); while rest no difference from ref at 8 WAF (9-12 WAT)

Conclusions

 Nitrate levels observed here are not abnormally high based on existing literature.

 Herbicide applications and subsequent plant breakdown did not negatively impact water quality metrics or nitrogen levels.

Future Work

- Treatments moved from mesocosm scale to field sites
 - 35 plots on Loakfoma lake
- Carried out on Noxubee National Wildlife Refuge
- Determine ammonium to ammonia conversion calculation for instrument.
- Need to repeat on other spp.
 - Ex) Frogsbit

Acknowledgements

- Herbicide Companies
- Noxubee Wildlife Refuge
- Mason Thomas, Schulyer Cool, Colin McCloud, Hayden Hunter, Chandler Bryant, Ethan Cox, Kennedy Calhoun, Cory Shoemaker, & Sam Kirk

Questions

- Gray Turnage Aquatic Plant Management:
 - Research Associate
 - Geosystems Research Institute, Mississippi State University, MS 39762
 - gturnage@gri.msstate.edu
- Dr. Gary Ervin Wetland Plant Ecology:
 - Professor of Biological Sciences
 - Dept. of Biological Sciences, Mississippi State University, MS 39762
 - gervin@biology.msstate.edu

